Enrollment No: _____ Exam Seat No:____

C. U. SHAH UNIVERSITY

Summer Examination-2020

Subject Name: Mathematical Concepts for Computer Science

Subject Code :4CS01IFM2 Branch: B.Sc.I.T.

Semester: 1 Date: 02/03/2020 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	[14]
	a)		(01)
	b)	Give one example of finite set.	(01)
	c)	What is the cardinality of a set {1,3,7,14,1000}?	(01)
	d)	Let $A = \begin{bmatrix} 0 & 4 \\ 8 & 8 \end{bmatrix}$, then $tr A = \underline{}$	(01)
	e)	Let $A = \{1, 8, 11\}$, $B = \{2, 9, 11\}$ then find $A \cap B$.	(01)
	f)	Define : Disjoint sets	(01)
	g)	$\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}$	(01)
	h)		(01)
	i)	Define: one-one function.	(01)
	j)	Let $A = \begin{bmatrix} 5 & 0 \\ 9 & 4 \end{bmatrix}$, find minor of the element '4'.	(01)

k) Check whether the function
$$f: \mathbf{R} \to \mathbf{R}$$
 defined by $f(x) = x^3$ is even or odd?

1) What do you mean by
$$x \to 0$$
? (01)

m) Let A and B be two sets, let
$$|A| = 5$$
, $|B| = 3$ and $|A \cup B| = 5$ then find $|A \cap B|$. (01)

$$\mathbf{n}) \lim_{x \to 0} \cos x = \underline{\qquad} \tag{01}$$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions [14]
a)
$$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \end{bmatrix}$$
 then show that A is an orthogonal matrix.

$$\begin{bmatrix} -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
b) Let $A = \{x \in \mathbb{N} / 3 \le x < 10\}, B = \{x \in \mathbb{Z} / -2 < x \le 4\}$ then find $A \cup B, A \cap B, A - B$ and $B - A$. (05)

c) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 6 & 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 5 & 1 \\ 4 & 2 & 6 \end{bmatrix}$ then find $A + 4B - I$, where I is an identity matix. (03)

Q-3		Attempt all questions	[14]
	a)	Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then prove that $A^2 = 3A - 2I$.	(05)
	b)	Draw a Venn Diagram for the following sets: $U = \{x \in \mathbb{N} \mid 1 \le x < 14\}$	(05)
	c)	 A = {1,2,6,9,13}, B = {2,4,5,6,9,10,12}, C = {1,2,3,6,9,10,12} Define the following terms with examples: i) Equal Sets ii) Singleton Set 	(04)
Q-4	`	Attempt all questions	[14]
	a)	Check whether the function $f: \mathbf{R} \to \mathbf{R}$ is even, odd, neither even nor odd?	(06)
		i) $f(x) = \cos x$ ii) $f(x) = x^2$ iii) $f(x) = x^3 - 9x - 5$	
	b)	Draw a graph of a function $f: \mathbf{R} \to \mathbf{R}$ defind by $f(x) = 4x^2, x \in \mathbf{R}$.	(04)
	c)	Define the following terms with examples: i) Constant function	(04)
		i) Constant functionii) Decreasing function	
		iii) Even function	
Q-5		Attempt all questions	[14]
	a)	Let $A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 3 & 6 \\ 0 & 2 & 7 \end{bmatrix}$, then find	(06)
	b)	$A^2 - 4B + I$, where I is an identity matrix. Find distance between two points:	(05)
	D)	i) Distance between (0,0) and (36,15) ii) Distance between (-5,0) and (0,3)	(03)
	c)	Find 1) $\lim_{x\to 2} 5(4x-2)$	(03)
		2) $\lim_{x \to 5} \frac{x-11}{x+5}$	
		$3) \lim_{x \to 0} \frac{e^x - 1}{x}$	
Q-6		Attempt all questions	[14]
•	a)	In which ratio does the point $(-1,6)$ divide the line segement joining the	(05)
	b)	points $P(-3,10)$ and $Q(6,-8)$? Find the area of triangle made by following points:	(05)
		i) $(1,0), (4,2), (3,-5)$	
	c)	ii) $(5,-1), (4,-5), (5,-4)$ Find the value of k if the points $(-6,9), (3,-3)$ and $(12,k)$ are	(04)
		collinear.	
Q-7		Attempt all questions	[14]

Page **2** of **3**

- a) Let $A = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 1 & 0 \\ 0 & 3 & 2 \end{bmatrix}$, find A^{-1} if possible. (06)
- **b)** Verify $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for the following sets: $A = \{1, 2, ..., 14\}, B = \{1, 2, 13, 14\}, C = \{2, 3, 7, 9, 11, 13\}$
- c) Verify De-Morgan's Law for the following sets: $U = \{1,2,...,18\}$, $A = \{1,2,4,8,16,17\}$ and $B = \{5,4,14,16,17,18\}$
- Q-8 Attempt all questions [14]
 - a) Let $A = \begin{bmatrix} 4 & 2 & -12 \\ 0 & 4 & 3 \\ 6 & -1 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 & 1 \\ 0 & -1 & 7 \\ 1 & 1 & 2 \end{bmatrix}$, then find 8AB.
 - b) Show that the given relation R is an Equivalence relation on a set A. (04) $A = \{1,2,3,4\}$ $R = \{(1,1), (1,4), (1,3), (3,1), (4,1), (4,4), (2,3), (2,2), (3,2), (3,3)\}.$
 - c) Check whether the relation R on a set A is reflexive or transitive? (03) $A = \{1,2,3,4\}, R = \{(1,1), (1,2), (2,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$

